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Abstract. We have reevaluated the hadronic contribution to the anomalous magnetic moment of the muon
(g− 2) and to the running of the QED fine structure constant α(s) at s = M2

Z. We incorporated new data
from hadronic τ decays, recently published by the ALEPH Collaboration. In addition, compared to previ-
ous analyses, we use more extensive e+e− annihilation data sets. The integration over the total hadronic
cross section is performed using experimental data up to 40 GeV and results from perturbative QCD above
40 GeV. The improvement from τ data concerns mainly the pion form factor, where the uncertainty in
the corresponding integral could be reduced by more than a factor of two. We obtain for the lowest order

hadronic vacuum polarization graph ahad
µ =(695.0 ± 15.0)×10−10 and∆α(5)

had(M2
Z)= (280.9 ± 6.3)×10−4 us-

ing e+e− data only. The corresponding results for combined e+e− and τ data are ahad
µ =(701.1 ± 9.4)×10−10

and ∆α(5)
had(M2

Z)= (281.7 ± 6.2) ×10−4, where the latter is calculated using the contribution from the five
lightest quarks.

Introduction

The anomalous magnetic moment aµ = (g − 2)/2 of the
muon is experimentally and theoretically known to very
high accuracy. In addition, the contribution of heavier ob-
jects to aµ relative to the anomalous moment of the elec-
tron scales as (mµ/me)2 ∼ 4×104. These properties allow
an extremely sensitive test of the validity of QED and of
additional contributions from strong and electroweak in-
teractions. The present value from the combined µ+ and
µ− measurements [1],

aµ = (11 659 230 ± 85) × 10−10 , (1)

should to be improved to a precision of at least 4 × 10−10

by a forthcoming Brookhaven experiment (BNL-E821) [2].
It is convenient to separate the prediction from the

Standard Model (SM) aSM
µ into its different contributions

aSM
µ = aQED

µ + ahad
µ + aweak

µ , (2)

where aQED
µ = (11 658 470.6 ± 0.2)×10−10 is the pure elec-

tromagnetic contribution (see [3] and references therein),
ahad

µ is the contribution from hadronic vacuum polariza-
tion, and aweak

µ = (15.1 ± 0.4) × 10−10 [3–5] accounts
for corrections due to the exchange of the weak interact-

ing bosons up to two loops1. Using the recent analysis of
S. Eidelman and F. Jegerlehner2 [7] that found ahad

µ (one-
loop) = (702.4 ± 15.3) × 10−10, and applying fourth or-
der corrections due to the exchange of additional photons
(incl. hadronic light-by-light scattering) and electron or
quark loops, calculated by T. Kinoshita et al.3 [9] to be
(−4.1 ± 0.7) × 10−10, one finds

aSM
µ = (11 659 184 ± 16) × 10−10 . (3)

Comparing the errors of the respective contributions to
aSM

µ reveals that its total uncertainty is clearly dominated
by the leading order vacuum polarization correction ahad

µ ,
originating from a quark-loop insertion into the muon ver-
tex correction diagram as shown in Fig. 1.

In this letter, we present a new evaluation of the hadro-
nic vacuum polarization contribution to aµ and also to the
running of the QED fine structure constant α(s) from low
energy to the mass of the Z boson. In addition to using
the complete and in comparison with previous analyses
slightly enlarged experimental information on e+e− anni-

1 The one-loop electroweak part of aSM
µ with neglected Higgs

boson contribution gives aweak
µ (1 loop) = 19.5 × 10−10. Tak-

ing into account fermionic and bosonic two-loop corrections
reduces the electroweak contribution to the value given in the
text. The authors of [6] considered effects from non-zero quark
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µγ γ

γ

had

Fig. 1. Leading order hadronic vacuum polarization contribu-
tion to aµ

hilation data, we incorporate new data from hadronic τ
decays [10] which provide a more precise description of
the hadronic contributions at energies less than 1.5 GeV.
We bring attention to the straightforward and statistically
well-defined averaging procedure and error propagation
used in this paper, which takes into account full system-
atic correlations between the cross section measurements.
We also stress our careful treatment of unmeasured final
states which are bound via isospin constraints.

1 Hadronic vacuum polarization
in γ and W propagators

As QCD is a non-Abelian theory with massless gauge
bosons, its perturbative expansion at low energies is not
well-behaved and non-perturbative effects lead to current-
ly unpredictable long distance resonance phenomena in
quark interactions. Fortunately, cross sections measured
in e+e− annihilation and spectral functions from τ decays
provide an experimental access to the hadronic vacuum
polarization: from unitarity, the hadronic cross section of
e+e− annihilation is related to the absorptive part of the
vacuum polarization correlator via the optical theorem.

Similarly, hadronic spectral functions from τ decays
are directly related to the isovector vacuum polarization
currents when isospin invariance (CVC) and unitarity hold.
For this purpose we have to worry whether the breakdown
of CVC due to quark mass effects (mu 6= md generat-
ing ∂µJ

µ ∼ (mu − md) for a charge-changing hadronic
current Jµ between u and d quarks) or unknown isospin-
violating electromagnetic decays has non-negligible con-
tributions within the present accuracy. Recent estimates
of CVC predictions of τ branching ratios into vector final
states [11] however show good agreement within about 5%
experimental accuracy over the full range of exclusive vec-
tor hadronic final states. Expected deviations from CVC

masses and obtained ∆aweak
µ (2 loop) ' −(36.9 ± 2.5) × 10−11,

which gives aweak
µ = 15.8 × 10−10

2 Historically, the first evaluation of the hadronic vacuum
polarization contribution to the muon (g − 2) was performed
in [8]

3 For a discussion of the higher order contributions consid-
ered in this analysis see Sect. 6.2

due to so-called second class currents as, e.g., the decay
τ− → π−η ντ where the corresponding e+e− final state
π0η (C=+1) is strictly forbidden, have estimated branch-
ing fractions of order of (mu −md)2 ' 10−5 [12], while the
experimental upper limit amounts to B(τ → π−η ντ ) <
1.4 × 10−4 [13] with 95% CL. Another classical test is
the pion β-decay, yielding a sensitivity to CVC violation
of 3%. The CVC hypothesis relates the isovector, vector
matrix element of the decay π− → π0e−ν̄e to the electro-
magnetic form factor of the pion. No deviation between
the CVC branching ratio and the experimental result has
been found [14,13].

An estimate of a possible CVC violation can be ob-
tained in the ππ final state which is dominated by the
ρ(770) resonance. SU(2) symmetry breaking can occur
in the ρ±–ρ0 masses and widths caused by electromag-
netic interactions. Hadronic contributions to the ρ±–ρ0

width difference are expected to be much smaller since
they are proportional to (mu−md)2. The different electro-
magnetic contributions to the width are listed in Table 1:
radiative transitions introduce a negligible effect, while
the dominant contribution comes from the π±–π0 mass
difference. A recent theoretical analysis [16] indicates that
the ρ± and ρ0 masses are in fact equal within 0.5 MeV/c2:
mρ± − mρ0 = −(0.15 ± 0.55) MeV/c2. This prediction
has been verified in the ALEPH analysis of the τ vec-
tor spectral functions [10] with the result: mρ± − mρ0 =
−(0.0±1.0) MeV/c2. Since the π− and π0 mass difference
is known experimentally [13] to be mπ± −mπ0 = (4.5936±
0.0005) MeV/c2 and understood theoretically [17] to be
almost completely from electromagnetic origin, it is ex-
pected that the total ρ± and ρ0 widths should be different
even in the limit where hadronic interactions are SU(2)-
invariant (this includes the chiral limit). An additional
point concerns contributions from photon bremsstrahlung.
While the infrared divergences in ρ → ππγ decays vanishes
when including the vertex correction graphs, finite terms
are expected to contribute differently to the widths of
the charged and the neutral ρ. The corresponding brems-
strahlung graphs have been calculated in [15]. The width
contributions from finite terms to both the ρ± and the
ρ0 turn out to be negative. The estimate of the width
difference given in Table 1 assumes finite contributions to
the widths from loop corrections to be small.

The total expected SU(2) violation in the ρ width is
finally computed from the above considerations to be

Γρ± − Γρ0

Γρ
= (2.8 ± 3.9) × 10−3 , (4)

where the error comes essentially from the estimate of the
ρ±–ρ0 mass difference and of the ππγ contribution. This
effect introduces corrections for ahad

µ and the running of
α(s) when including τ data (see Sect. 6).

From a more qualitative point of view, one should
keep in mind that in this analysis the CVC hypothesis
is applied at a very low energy scale where the absorp-
tive parts of the matrix elements are largely dominated
by non-perturbative QCD which are expected to factorize
from their respective W or γ excitation.
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Table 1. Expected CVC violation from electromagnetic in-
teractions in ρ±–ρ0 decays

Final states
Γ

ρ± −Γ
ρ0

Γρ
(×103) Ref.

πω → ππ0γ 0.32 [15]
πγ −0.34 ± 0.21 [13]
η γ −0.38 ± 0.07 [13]
`+`− −0.091 ± 0.004 [13]
mπ± −mπ0 , mρ± −mρ0 6.3 ± 2.5 [13,16]
ππγ −3 ± 3 [15]
Sum 2.8 ± 3.9

However, electroweak radiative corrections must be
taken into account. Their dominant contribution comes
from the short distance correction to the effective four-
fermion coupling τ− → (dū)− ντ yielding the fractional
logarithmic term (α(Mτ )/2π)(4 ln(MZ/Mτ ) +5/6) [18]
which vanishes in leptonic τ decays. The short distance
correction can be absorbed into an overall multiplicative
electroweak correction SEW introduced in the definition
of the spectral functions used in [10]. The resummation of
higher-order electroweak logarithms using the renormal-
ization group yields [19,20]

SEW =
(
α(mb)
α(Mτ )

)9
19

×
(
α(MW)
α(mb)

)9
20

×
(
α(MZ)
α(MW)

)36
17

= 1.0194 , (5)

while remaining perturbative electroweak corrections are
of order αn(Mτ ) lnn(MZ/Mτ ) which is safe to ignore. The
subleading non-logarithmic short distance correction, cal-
culated to orderO(α) at quark level: 5α(Mτ )/12π ' 0.0010
[18] turns out to be small. Additional long-distance correc-
tions are expected to be final state dependent. They have
only been computed for the τ− →π− ντ decay leading to
a total radiative correction of 2.03% [21] which is dom-
inated by the leading logarithm from the short distance
contribution. The evaluation of (5) neglects radiative cor-
rections from additional gluon exchange between the final
state quarks.

To be safe [22], the uncertainty of SEW in (5) is esti-
mated to be ∆SEW = 0.0040, which is taken into account
in the CVC cross section prediction from τ decays.

1.1 Muon magnetic anomaly

By virtue of the analyticity of the vacuum polarization
correlator, the contribution of the hadronic vacuum po-
larization to aµ can be calculated via the dispersion inte-
gral [23]

ahad
µ =

1
4π3

∞∫
4m2

π

ds σhad(s)K(s) . (6)

Here σhad(s) is the total e+e−→ hadrons cross section as
a function of the c.m. energy-squared s, and K(s) denotes
the QED kernel [24]

K(s) = x2
(

1 − x2

2

)
+ (1 + x)2

(
1 +

1
x2

)

×
(

ln(1 + x) − x+
x2

2

)
+

(1 + x)
(1 − x)

x2 lnx (7)

with x = (1 − βµ)/(1 + βµ) and β = (1 − 4m2
µ/s)

1/2 (see
also remarks concerning the numerical stability of K(s)
in [7]). The function K(s) decreases monotonically with
increasing s. It gives a strong weight to the low energy part
of the integral (6). About 91% of the total contribution
to ahad

µ is accumulated at c.m. energies
√
s below 2.1 GeV

while 72% of ahad
µ is covered by the two-pion final state

which is dominated by the ρ(770) resonance. Recent τ
data published by the ALEPH Collaboration provide a
very precise spectrum of the two-pion final state as well as
new input for the more controversial four-pion final states.
This new information can significantly improve the ahad

µ

determination.

1.2 Running of the QED fine structure constant

In the same spirit we evaluate the hadronic contribution
∆αhad(s) to the renormalized vacuum polarization func-
tion Π ′

γ(s) which governs the running of the electromag-
netic fine structure constant α(s). For the spin 1 photon,
Π ′

γ(s) is given by the Fourier transform of the contrac-
tion of the electromagnetic currents jµ

em(s) in the vacuum
(qµqν−q2gµν)Π ′

γ(q2) = i
∫
d4x eiqx〈0|T (jµ

em(x)jν
em(0))|0〉.

With ∆α(s)=−4παRe
[
Π ′

γ(s) −Π ′
γ(0)

]
, one has

α(s) =
α(0)

1 −∆α(s)
, (8)

where 4πα(0) is the square of the electron charge in the
long-wavelength Thomson limit. The contribution ∆α(s)
can naturally be subdivided in a leptonic and a hadronic
part. Furthermore, at s = M2

Z it is appropriate to sepa-
rate the leading vacuum polarization contribution involv-
ing the five light quarks u, d, s, c, b from the top quark
contribution since the latter cannot be calculated in the
light fermion approximation.

The leading order leptonic contribution is given by

∆αlep(M2
Z) =

α(0)
3π

∑
`

(
ln
MZ

m2
`

− 5
3

)

= 314.2 × 10−4. (9)

Using analyticity and unitarity, the dispersion integral for
the contribution from the light quark hadronic vacuum
polarization ∆α(5)

had(M
2
Z) reads [25]

∆α
(5)
had(M

2
Z) = − M2

Z

4π2 α
Re

∞∫
4m2

π

ds
σhad(s)

s−M2
Z − iε

, (10)
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where σ(s) = 16π2α2(s)/s · ImΠ ′
γ(s) from the optical the-

orem, and ImΠ ′
γ stands for the absorptive part of the

hadronic vacuum polarization correlator. In contrast to
ahad

µ , the integration kernel favours cross sections at higher
masses. Hence, the improvement when including τ data is
expected to be small.

The top quark contribution can be calculated using the
next-to-next-to-leading order α3

s prediction of the total
inclusive cross section ratio R, defined as

R(s) =
σtot(e+e− → hadrons)
σ(e+e− → µ+µ−)

=
3s

4πα2σtot , (11)

from perturbative QCD [26,7]:

Rpert(s) = 3
∑

f

Q2
f

(
1 − 4m2

f

s

)1/2(
1 +

2m2
f

s

)
[
1 +

αs

π
+ r1

(αs

π

)2
+ r2

(αs

π

)3 ]
, (12)

where r1 = 1.9857−0.1153nf , r2 = −6.6368−1.2001nf −
1.2395(

∑
f Qf )2/3

∑
f Q

2
f and nf is the number of in-

volved quark flavours. The evaluation of the integral (10)
with mtop = 175 GeV and the running strong coupling
constant fixed at αs(M2

Z) = 0.121 yields ∆αtop(M2
Z) =

−0.6 × 10−4.
Using ∆α(5)

had(M
2
Z)= (280 ± 7) × 10−4 [7], one obtains

α−1(M2
Z) = 128.902 ± 0.090 . (13)

Again, the error is dominated by the hadronic vacuum
polarization part that is not calculable within perturbative
QCD.

2 The integration procedure

The information used for the evaluation of the integrals (6)
and (10) comes mainly from direct measurements of the
cross sections in e+e− annihilation and via CVC from τ
spectral functions. The integrals themselves are evaluated
using the trapezoidal rule, i.e., combining adjacent mea-
surement points by straight lines. Even if this method
is straightforward and free from theoretical constraints
(other than CVC in the τ case), its numerical calculation
requires special care. The combination of measurements
from different experiments taking into account correla-
tions – both inside each data set and between different
experiments are subjected to additional studies and dis-
cussions.

2.1 Averaging data from different experiments

In order to exploit the maximum information, we com-
bine weighted measurements of different experiments at a
given energy instead of calculating separately the integrals

for every experiment and finally averaging them4. Gener-
ally, if different measurements at a given c.m. energy show
inconsistencies, i.e., their χ2 per degree of freedom (dof)
is larger than one, we rescale the error of their weighted
average with

√
χ2/dof .

The solution of the averaging problem is found using
a correlated χ2 minimization. We define

χ2 =
Nexp∑
n=1

Nn∑
i,j=1

(xn
i − ki) (Cn

ij)
−1 (xn

j − kj) , (14)

where xn
i is the ith cross section measurement of the nth

experiment in a given final state, Cn
ij is the covariance be-

tween the ith and the jth measurement and ki is the un-
known distribution. The covariance matrix Cn is defined
as

Cn
ij =

{
(∆n

i,stat)
2 + (∆n

i,sys)
2 for i = j

∆n
i,sys ·∆n

j,sys for i 6= j
,

i, j = 1, . . . , Nn , (15)

where ∆n
i,stat (∆n

i,sys) denotes the statistical (systematic)
error of xn

i . The systematic errors of the e+e− annihila-
tion measurements are essentially due to luminosity and
efficiency uncertainties. The minimum condition dχ2/dki

= 0, ∀i leads to the linear equation problem

Nexp∑
n=1

Nn∑
j=1

(xn
j − kj) (Cn

ij)
−1 = 0 , i = 1, . . . , Nn . (16)

The inverse covariance C̃−1
ij between the solutions ki, kj is

the sum over the inverse covariances of every experiment

C̃−1
ij =

Nexp∑
n=1

(Cn
ij)

−1 . (17)

2.2 Correlations between experiments

Equation (17) provides the covariance matrix needed for
the error propagation when calculating the integrals over
the solutions ki from (16). Up to this point, C̃ij only
contains correlations between the systematic uncertainties
within the same experiment. However, due to commonly
used simulation techniques for acceptance and luminos-
ity determinations as well as state-of-the-art calculations
of radiative corrections, systematic correlations from one

4 One could imagine two experiments a and b, each with two
independent measurements a1(E1) ± ∆a1, a2(E2) ± ∆a2 and
b1(E1)±∆b1, b2(E2)±∆b2 at energies E1 6= E2. Setting ∆a1 =
∆a2 = ∆b1 = ∆b2 leads to identical errors in both integration
methods. However, non-symmetric errors as, e.g., ∆a1/2 =
2∆a2 = 2∆b1 = ∆b2/2 propagate a 53% larger uncertainty
when calculating independently the sum over the points (trivial
integration) of the experiments a, b and averaging afterwards
rather than averaging 〈a1, b1〉 and 〈a2, b2〉 first, i.e., keeping
the energy information of the respective points in the average
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experiment to another cannot be excluded. It is clearly a
difficult task to reasonably estimate the amount of such
correlations as they depend on the capabilities of the con-
tributing experiments and one’s theoretical understanding
of the dynamics of the respective final states. In general,
one can state that in older experiments, where only parts
of the total solid angle were covered by the detector ac-
ceptance, individual experimental limitations should dom-
inate the systematic uncertainties. Potentially common
systematics, such as radiative corrections or efficiency, ac-
ceptance and luminosity calculations based on the Monte
Carlo simulation, play only minor roles. The correlations
between systematic errors below 2 GeV c.m. energy are
therefore estimated to be between 10% and 30%, with the
exception of the π+π− final state, where we impose a 40%
correlation due to the easier experimental situation and
the better knowledge of the dynamics which leads to non-
negligible systematic contributions from the uncertainties
of the radiative corrections. At energies above 2.1 GeV
the experiments measured the total inclusive cross section
ratio R. Between 2.1 and 3.1 GeV, individual technical
problems dominate the systematic uncertainties. At higher
energies, new experiments provide nearly full geometrical
acceptance which decreases the uncertainty of efficiency
estimations. Radiative corrections as well as theoretical
errors of the luminosity determination give important con-
tributions to the final systematic errors quoted by the
experiments. We therefore estimate the correlations be-
tween the systematic errors of the experiments to be neg-
ligible between 2 GeV and 3 GeV, 20% between 3 GeV
and 10 GeV, and 30% above 10 GeV.

These correlation coefficients are added to all those
entries of C̃ij from (17) which involve two different exper-
iments.

2.3 Inclusion of τ data

In this analysis we include additional data from τ de-
cays into two- and four-pion final states5: τ− →π−π0 ντ ,
τ− →π−3π0 ντ and τ− → 2π−π+π0 ντ , recently published
by the ALEPH Collaboration [10]. Assuming isospin in-
variance to hold, the corresponding e+e− isovector cross
sections are calculated via the CVC relations

σI=1
e+e−→ π+π− =

4πα2

s
v1, π−π0 ντ

, (18)

σI=1
e+e−→ π+π−π+π− = 2 · 4πα2

s
v1, π− 3π0 ντ

, (19)

σI=1
e+e−→ π+π−π0π0 =

4πα2

s

[
v1, 2π−π+π0 ντ

− v1, π− 3π0 ντ

]
. (20)

The τ spectral functions v1 are given as binned continous
distributions of the mass-squared s. In each bin i, the spec-
tral function v1(si) contains the (normalized) invariant

5 Throughout this paper, charge conjugate states are implied

mass spectrum ∆Ni/N , integrated over the bin width dsi.
On the contrary e+e− cross sections are measured at dis-
crete energy settings. To each e+e− measurement is asso-
ciated a τ cross section value obtained by interpolating be-
tween adjacent bins. This interpolation takes into account
the correlations between the bins and is achieved impos-
ing a functional form obtained from a fit to Breit-Wigner
resonances [10] using the Gounaris-Sakurai parametriza-
tion [28]. However, the fit function is renormalized in each
bin so that its integral over the width of each bin corre-
sponds to the measured CVC cross section for that bin.
All the data points – τ , e+e− and interpolated τ values –
are injected with their correlations into (16) and (17).

Due to the high bin-to-bin correlations of the τ data
and the significant normalization uncertainty coming from
the τ hadronic branching ratios, biases of the least-square
minimization [27] cannot be excluded. We therefore cal-
culate the average solution twice, i.e., with and without
correlations, use the mean value of both integrations as
the result and add half of the total difference as addi-
tional systematic error. This is done in all cases where τ
data are involved. The effect amounts to about 10% of the
total error.

2.4 Evaluation of the integral

The procedure described above provides the weighted av-
erage and the covariance of the cross sections from different
experiments contributing to a certain final state in a given
range of c.m. energies. We now apply the trapezoidal rule.
In order to perform the integrations (6) and (10), we sub-
divide the integration range in sufficiently small energy
steps and calculate for each of these steps the correspond-
ing covariance (where additional correlations induced by
the trapezoidal rule have to be taken into account). This
procedure yields error envelopes between adjacent mea-
surements as depicted by the shaded bands in Figs. 2 and
3.

3 Radiative corrections

Higher order radiative corrections bias the measurements
of both cross sections in e+e− annihilation and invariant
mass spectra from τ hadronic decays. The e+e− exper-
iments generally correct the measured cross section for
QED effects, including bremsstrahlung, vacuum polariza-
tion and higher order self-energy graphs (see references
in [7]). Following the prescription of [7], we have multi-
plied all inclusive cross section measurements R at masses
below the J/ψ resonance by the (small) correction factor
(1+∆αlep(s))(α/α(s))2 in order to account for the missing
correction for hadronic vacuum polarization.

In τ decays, final state radiation from the τ itself or
from its decay products can influence the invariant mass
measurement. Due to the high mass of the τ lepton, the
bremsstrahlung graph is largely suppressed. Both types of
radiation are included in the Monte Carlo simulation pro-
gram KORALZ [29], used by ALEPH to unfold the mea-
sured distributions from detector resolution and physical
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Fig. 2. Two-pion cross section as a function of
the c.m. energy-squared. The band represents
the result of the averaging procedure described
in the text within its diagonal errors. The lower
left hand plot shows the chiral expansion of the
two-pion cross section obtained from expression
(21)
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Fig. 3. Four-pion cross section as a function
of the c.m. energy-squared. The band repre-
sents the result of the averaging procedure
described in the text within its diagonal
errors. The right-hand plot shows additionally
the e+e−→ ωπ0 amplitude (small points)

(higher order) effects. Even if the actual frequency with
which final state radiation occurs or if its energy were not
well simulated in the Monte Carlo, reconstructed photons
found to originate from radiation of the τ decay [30] are
included in the invariant mass determination, and thus do
not bias the measurement.

Electroweak radiative corrections are applied through
the CVC correction factor SEW defined in (5).

4 The origin of the data

The exclusive low energy e+e− cross sections have mainly
been measured by experiments working at e+e− collid-
ers in Novosibirsk and Orsay. Due to the high hadron
multiplicity at energies above 2.5–3.1 GeV, the exclusive
measurement of the respective hadronic final states is not
practicable. Consequently, the experiments at the high
energy colliders DORIS and PETRA (DESY) and PEP
(SLAC) have measured the total inclusive cross section
ratio R.

We give in the following a compilation of the data used
in this analysis:
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– The e+e−→ π+π− measurements are taken from OLYA
[31,32], TOF [33], NA7 [34], CMD [31], DM1 [35] and
DM2 [36]. In addition, we use τ data from ALEPH
[10] normalized to the world average branching ratio
B(τ− →π−π0 ντ ) = (25.24± 0.16)%[13]. According to
(18), τ data provide only the dominant isovector part
of the total two-pion cross section. A correction due to
the small isospin-violating isoscalar ω → π+π− final
state, which interferes with the isovector amplitude, is
applied. A small correction for the missing, i.e., un-
measured decay modes ρ → π0γ (only for e+e− data)
and ρ → ηγ, is added.

– The reaction e+e−→ π+π−π0 is dominated by the ω
and φ intermediate resonances. In the peak region of
these resonances we use analytic parametrizations of
the cross sections. The non-resonant data are taken
from ND [37], M2N [38], M3N [39], DM1 [40] and DM2
[41]. Corrections for the missing ω and φ decay modes
are applied.

– The e+e−→ π+π−π0π0 data are available from OLYA
[42], ND [37], M2N [38], DM2 [43–46] and M3N [39].
According to (20), a linear combination of both four-
pion τ decay channels measured by ALEPH [10] con-
nects the corresponding spectral functions with the
above e+e− final state. We use the two branching ra-
tios B(τ− → 2π−π+π0 ντ ) = (4.25± 0.09)% and
B(τ− →π−3π0 ντ ) = (1.14± 0.14)%[13], as an appro-
priate normalization.

– The reaction e+e−→ ωπ0 is mainly reconstructed in
the π+π−π0π0 final state. It was studied by the col-
laborations ND [37] and DM2 [45]. Corrections for the
missing ω decay modes are applied.

– The e+e−→ π+π−π+π− final state was studied by
the experiments OLYA [42], ND [37], MEA [47], CMD
[48], DM1 [49,50], DM2 [43,45,46] and M3N [39]. The
corresponding spectral function from τ− →π−3π0 ντ

(according to (19)) is provided by ALEPH [10].
– The e+e−→ π+π−π+π−π0 final state is taken from

M3N [39] and CMD [48]. The other five-pion mode
e+e−→ π+π−3π0 can be accounted for using the rigou-
rous isospin relation σπ+π−3π0 = 0.5 × σπ+π−π+π−π0 .

– For the reaction e+e−→ ωπ+π−, measured by the
groups DM1 [49] and DM2 [48], a correction for ω de-
cays other than into three pions which appear in the
five-pion final state is applied.

– The e+e−→ π+π−η data were studied by ND [37]
and DM2 [51]. We subtract from the cross section
the contributions which are already counted in the
π+π−π+π−π0 and π+π−3π0 finale states.

– The cross sections of the six-pion final states 3π+3π−
and 2π+2π−2π0 were measured by DM1 [52], M3N
[39] CMD [48] and DM2 [44]. In [10] an upper limit for
the unknown π−π+ 4π0 cross section of σπ+π−4π0 ≤
(3/2) × σ2π−2π+ 2π0 − (9/24) × σ3π−3π+ was derived
using isospin constraints. We take half of this upper
limit as the estimated contribution, with an error of
100%.

– The e+e−→ K+K− and e+e−→ K0
SK0

L cross sections
are taken from OLYA [53], DM1 [54] and DM2 [55].

– The reactions e+e−→ K0
S K+π− and e+e−→ K+K−π0

were studied by DM1 [56,57] and DM2 [43]. Using
isospin symmetry the cross section of the final state
K0

SK0
Lπ

0 is obtained from the relation σK0
SK0

Lπ0 =
σK+K−π0 .

– The inclusive reaction e+e−→ K0
S+X was analyzed by

DM1 [58]. After subtracting from its cross section the
separately measured contributions of the final states
K0

SK0
L, K0

S K+π− and K0
SK0

Lπ
0, it still includes the

modes K0
SK0

Sπ
+π−, K0

SK0
Lπ

+π−, K0
SK+π−π0 and

K0
SK−π+π0. With the assumption that the cross sec-

tions for the processes e+e− →K0K̄0(ππ)0 and e+e− →
K+K−(ππ)0 are equal, one can summarize the total
KK̄ππ contribution as twice the above corrected K0

S+X
cross section. A reasonable estimate of the system-
atic uncertainty, implied by the assumption made, is
obtained by taking the cross section for the channel
K+K−π+π− measured by DM1 [56] and DM2 [43].

– At higher energy the total cross section ratio R is mea-
sured inclusively. We use the data provided by the ex-
periments γγ2 [59], MARK I [60], DELCO [61], DASP
[62], PLUTO [63], LENA [64], Crystal Ball [65], MD-1
[66], CELLO [67], JADE [68], MARK-J [69], TASSO
[70], CLEO [71], CUSB [72] and MAC [73]. Above
3.5 GeV the measurements of the MARK I Collabo-
ration are significantly higher than those from LENA,
PLUTO and Crystal Ball. In addition, the QCD pre-
diction of R, which should be reliable in this energy
regime, favours lower values. In agreement with [7], we
neglect MARK I data above this energy threshold.

Although small, the enhancement of the cross sec-
tion due to γ–Z interference is corrected for c.m. en-
ergies above the J/ψ mass. We use a factorial ansatz
according to [74,7], yielding a negligible contribution
to ahad

µ and a −0.30 × 10−4 shift of ∆α(5)
had(M

2
Z).

5 Analytical contributions

In some energy regions where data information is scarce
and/or reliable theoretical predictions are available, we
use analytical contributions to extend the experimental
integral.

5.1 The π+π− threshold region

To overcome the lack of data at threshold energies, a sec-
ond order expansion obtained from Chiral Perturbation
Theory [75] is used as a description of the pion form fac-
tor Fπ (which is connected with the two-pion cross section
via the expression |Fπ|2 = 3sσππ/(πα2(1 − 4m2

π/s)
3/2):

FChPT
π ' 1 +

1
6
〈r2〉π s+ cπ s

2 +O(s3) . (21)

Exploiting precise results from space-like data [76], the
pion charge radius-squared 〈r2〉π = (0.431 ± 0.026) fm2

and the coefficient cπ = (3.2 ± 1.0) GeV−4 from (21) have
recently been determined [77] by means of a simultaneous
fit.
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5.2 Narrow resonances

The e+e− annihilation cross section involves narrow reso-
nances such as the ω(782) and φ(1020) at low energies, the
J/ψ and Υ resonances at the cc̄ and bb̄ quark thresholds,
respectively, as well as their excited spectroscopic states. It
is safe to parametrize these states using relativistic Breit-
Wigner resonance shapes with an s-dependent width. We
use the formulae given in [7]. The physical input values of
the parametrizations and their errors are taken from [13].
The total parametrization errors are then calculated by
gaussian error propagation.

5.3 High energy tail

At energies sufficiently above the Υ resonance family, the
perturbative QCD prediction of R with five active quarks
is supposed to be reliable. In agreement with [7] we use
Rpert(s) from (12) for

√
s ≥ 40 GeV.

6 Results

We evaluate the integrals (6) and (10) exclusively, i.e.,
for every contributing final state, up to the c.m. energy
of 2.125 GeV. Even if some particular modes have been
measured up to somewhat higher energies, we have to
worry about unmeasured exclusive modes and therefore
use the total R measurement above this threshold. Both
energy regions are assumed to be uncorrelated. Because
the contributions of the exclusive channels at low energy
are simply summed up, we have to estimate their respec-
tive covariances when propagating the error: in general,
unmeasured final states whose contributions are deduced
from measured ones via isospin are set to be 100% corre-
lated with these. Also different detectors performing the
same measurement are correlated through the sharing of
commonly used simulation techniques to calculate accep-
tance and selection efficiency which depend on the as-
sumed underlying physical dynamics. Contributions from
resonances that are analytic are globally assumed to have
20% correlations due to modelling uncertainties. Between
purely measured final states we have estimated the corre-
lations depending on the number of common experiments
that contribute to their measurements and on the common
energy region, as well as according to the relative impor-
tance of their statistical and systematic errors. In general
our estimation yields a correlation between 10% and 20%.
This treatment is different from that of [78] where a 100%
correlation was assumed.

As described in Sect. 1, corrections to the charged
ρ± width have to be applied to account for small CVC-
violating effects. The magnitude of the width difference
(4) translated into ahad

µ and ∆α
(5)
had(M

2
Z) is evaluated us-

ing a parametrization of the ρ line shape based on vector
resonances [10]. We obtain the additive corrections

δahad
µ = −(1.3 ± 2.0) × 10−10

δ∆α
(5)
had(M2

Z) = −(0.09 ± 0.12) × 10−4 (22)

for the τ− →π−π0 ντ spectral function which is applied
in the present analysis. Corrections from the higher mass
resonances ρ(1450), ρ(1700) are expected to be negligible.

The two- and four-pion cross sections (incl. the τ con-
tribution) in different energy regions are depicted in Figs.
2 and 3. The bands are the results within (diagonal) error-
envelopes of the averaging procedure and the application
of the trapezoidal rule described in Sect. 2.

6.1 Lowest order hadronic contributions

The results of the exclusive contributions to ahad
µ and

∆α
(5)
had (M2

Z) are presented in Table 2. After the inclu-
sion of the τ data, the error of ahad

µ is dominated much
less by the uncertainty of the two-pion contribution.

Other important sources are the contradictory π+π−
2π0 data, as well as the unmeasured π+π−4π0 final state.
In the latter case, limits can be set only by using very con-
servative isospin arguments. As shown in [10] by means of
a decomposition in orthogonal isospin classes (Pais [79])
the large upper limit comes from the assumption of a dom-
inant σ411 class accompanied by a vanishing σ321 contri-
bution. Both classes occur in π+π−π+π−2π0, while none
contributes to π+π−π+π−π+π− and only σ411 is part of
π+π−4π0. The measured cross section of π+π−π+π−2π0

is clearly higher than the corresponding π+π−π+π−π+π−
final state hence guaranteeing a leading contribution from
one of the classes mentioned if isospin invariance holds.
Since those classes correspond to eigenstates, a resonance
analysis of the measured six-pion data would reveal im-
portant properties of the class structure of the respective
modes which thus could give more constraining isospin
bounds.

Another large uncertainty comes from the KK̄ππ final
states. The measurement of the K+K−π+π− mode alone
does not allow one to calculate isospin bounds for all pos-
sible contributions. Fortunately, it is possible to extract
the complete KK̄ππ contribution on the basis of a DM1
measurement of the inclusive channel K0

S+X [58]. Never-
theless, large experimental uncertainties prevent a precise
determination of the corresponding integrals.

The last important error source, especially for ∆α(5)
had

(M2
Z), comes from the integral over the measured high

energy inclusive cross section ratio R. The reliability of
the QCD perturbative expansion for energies sufficiently
above the still unpredictable resonance phenomena has
been proven in many cases (see, e.g., αs measurements
from different energy scales at LEP, HERA and from τ
decays). Thus, theoretical input at energies lower than
40 GeV should be reliable and could significantly help to
reduce the integration uncertainties [82,83]. However, this
has not been used in the present analysis which relies on
experimental data as far as possible.

The squared contributions of the various final states
and energy regimes to the errors of ahad

µ and ∆α(M2
Z) are

depicted in Fig. 4. Only the results after the inclusion of
τ data are shown.
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Table 2. Summary of the ahad
µ and ∆α

(5)
had(M2

Z) contributions from e+e− annihilation and τ
decays. The line “π+π− threshold” contains the results from the integral over expression (21)
at threshold energies

Final states ahad
µ (×1010) ∆α

(5)
had(M2

Z) (×104) Energy (GeV)

π+π− threshold 2.30 ± 0.05 0.04 ± 0.00 4m2
π – 0.320

π+π− 495.86 ± 12.46 34.01 ± 0.87 0.320 – 2.125
π+π− (incl. τ data) 500.81 ± 6.03 34.31 ± 0.38 0.320 – 2.125
ρ(π0γ + η γ) (1) 0.30 ± 0.05 0.02 ± 0.01 0.298 – 2.125
ω 37.09 ± 1.07 2.97 ± 0.09 0.420 – 0.810
ω → πγ, neutrals (1) 0.03 ± 0.01 < 0.01 0.810 – 2.125
φ 39.23 ± 0.94 5.18 ± 0.12 1.000 – 1.055
φ → η γ, π0γ (1) 0.09 ± 0.01 0.01 ± 0.00 1.055 – 2.125

π+π−π0 (below φ) 4.12 ± 0.41 0.42 ± 0.04 0.810 – 1.000
π+π−π0 (above φ) 1.90 ± 0.72 0.46 ± 0.26 1.055 – 2.125

π+π−2π0 21.41 ± 2.36 5.82 ± 0.63 0.910 – 2.125
π+π−2π0 (incl. τ data) 22.26 ± 1.53 6.16 ± 0.49 0.897 – 2.125

ω π0(ω → πγ, neutr.) (1) 0.88 ± 0.11 0.18 ± 0.02 0.930 – 2.125

π+π−π+π− 15.90 ± 1.34 4.61 ± 0.39 0.983 – 2.125
π+π−π+π− (incl. τ data) 16.50 ± 0.98 4.76 ± 0.31 0.794 – 2.125

π+π−π+π−π0 4.02 ± 0.51 1.51 ± 0.20 1.019 – 2.125
π+π−3π0 (2) 2.01 ± 0.26 0.75 ± 0.10 1.019 – 2.125

ω π+π−(ω → πγ, neutr.) (1) 0.07 ± 0.02 0.03 ± 0.01 1.340 – 2.125

π+π−π+π−π+π− 0.47 ± 0.14 0.19 ± 0.04 1.350 – 2.125
π+π−π+π−2π0 3.32 ± 0.36 1.35 ± 0.14 1.350 – 2.125
π+π−4π0 (2) 2.40 ± 2.40 0.98 ± 0.98 1.350 – 2.125

η π+π− (3) 0.51 ± 0.14 0.16 ± 0.05 1.075 – 2.125

K+K− 4.30 ± 0.58 0.85 ± 0.10 1.055 – 2.055
K0

SK0
L 1.20 ± 0.42 0.23 ± 0.08 1.090 – 2.125

K0
SK+π− (+ K0

LK−π+ (2)) 2.04 ± 0.36 0.70 ± 0.12 1.340 – 2.125
K+K−π0 0.42 ± 0.29 0.15 ± 0.10 1.440 – 2.125
K0

SK0
Lπ

0 (2) 0.42 ± 0.29 0.15 ± 0.10 1.440 – 2.125
KK̄ππ (all modes) 4.52 ± 1.65 1.82 ± 0.66 1.441 – 2.125
J/ψ(1S,2S,3770) 8.04 ± 0.52 9.97 ± 0.68 3.096 – 3.800
Υ (1S,2S,3S,4S,10860,11020) 0.10 ± 0.01 1.18 ± 0.08 9.460 – 11.20
R 41.64 ± 3.61 164.31 ± 5.59 2.125 – 40.0

R (perturbative) (4) 0.16 ± 0.00 42.82 ± 0.10 40.0 – ∞∑
(e+e− → hadrons) 695.0 ± 15.0 280.9 ± 6.3 4m2

π – ∞∑
(e+e− → hadrons) (incl. τ data) 701.1 ± 9.4 281.7 ± 6.2 4m2

π – ∞
1 Correction for missing modes (see text)
2 Deduced from isospin relations (see text)
3 Without contribution from η → π+π−π0 and η → 3π0

4 Values are taken from [7]

We obtain for the lowest order hadronic vacuum po-
larization diagram of the muonic anomalous magnetic mo-
ment the contributions

ahad
µ = (695.0 ± 15.0) × 10−10

(e+e− data only)

ahad
µ = (701.1 ± 9.4) × 10−10

(combined e+e− and τ data)

and for the running of α at M2
Z

∆α
(5)
had(M

2
Z) = (280.9 ± 6.3) × 10−4

(e+e− data only)

∆α
(5)
had(M

2
Z) = (281.7 ± 6.2) × 10−4

(combined e+e− and τ data) .

Figure 5 shows a compilation of published results. The
inclusion of the new τ data yields a large improvement
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Fig. 4. Quadratic contribution of the various error
sources to ahad
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had(M2
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hand plot) after the inclusion of τ data. In the energy
region 0–2.1 GeV we include all exclusive contribu-
tions that are not given separately
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Fig. 5. Comparison of estimates of ahad
µ (lowest)

and ∆α(5)
had(M2

Z)

in the precision of the ahad
µ determination. The difference

in ahad
µ between the exclusive e+e− analyses of [7] and

this work is mainly due to a disagreement in the two-pion
integral where we obtain significantly lower values. In ad-
dition, differences in the handling of unmeasured modes
generate inconsistent results. The results of [9] cannot eas-
ily be compared to the newer ones as the data set did
not include the recent DM2 results. The differences in
the final errors of ahad

µ in the exclusive e+e− analysis of
this work compared to [7,78] is mainly caused by different
techniques in the handling of the data and their errors.
The detailed study of the origin of correlations, their prop-
agation, as well as the rigourous use of isospin constraints
to bound unmeasured modes yield slightly smaller errors
here. As expected, the gain in the precision of ahad

µ com-
ing from τ data is significant whereas it is very small for
∆α

(5)
had(M

2
Z) since the dominant contributions and uncer-

tainties come from energies above the τ mass.

6.2 Higher order contributions

In the famous paper of Kinoshita et al. [9], higher or-
der contributions to the muon hadronic vacuum polar-
ization graph, such as additional lepton or quark loops
inserted in the diagram of Fig. 1 and the so-called light-
by-light scattering graph, have been evaluated. The lat-
ter has been re-computed by different groups obtaining
(−5.2 ± 1.8) × 10−10 [85] and (−9.2 ± 3.2) × 10−10 [86]
with large uncertainties compared to the designed experi-
mental accuracy of ∆aµ ' 4.0 × 10−10 of the forthcoming

BNL experiment. We use the value of (−6.2 ± 4.0)×10−10

in the following with an enlarged error to account for in-
consistencies.

The calculation of the higher order O(α/π)3 loop dia-
grams is accomplished and partly corrected in a recent
work [87], where second order kernel functions K(2)(s)
are provided. These are used to calculate the correspond-
ing contributions in the same spirit as the dominant low-
est order graph by virtue of the dispersion integral (6).
The numerical evaluation in [87] was performed on the
basis of the data sample used by [7]. We repeat this exer-
cise here in order to check the consistency of the results.
For the contribution of diagrams with additional pho-
ton exchanges, e.g., the fourth order muon vertex correc-
tion, we use the kernel labeled K(2a)(s) in [87] and obtain
a
(2a)
µ = (−20.9 ± 0.4)×10−10. The diagrams with an elec-

tron loop inserted in one of the photon lines of Fig. 1 (ker-
nel K(2b)(s) in [87]) contribute to a(2b)

µ = (10.6 ± 0.2) ×
10−10, where the asymptotic expansion, the analytical and
numerical solutions provided in [87] lead to very similar
results. Finally, the insertion of two hadronic loops in the
muon vertex correction graph (kernel K(2c)(s) in [87]) re-
sults in a

(2c)
µ = (0.27 ± 0.01) × 10−10. The contributions

a
(2a,b,c)
µ are found to be in agreement with [87]. All higher

order results given here are computed from the e+e− data
set only.

The compilation of the hadronic higher order parts
(including light-by-light scattering) yields ahad

µ [(α/π)3] =
(−16.2 ± 4.0) × 10−10.
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6.3 Results for aµ and α(M2
Z)

Collecting all contributions, we obtain for the anomalous
magnetic moment of the muon

aµ = (11 659 164.5 ± 15.6) × 10−10

(e+e− data only)
aµ = (11 659 170.6 ± 10.2) × 10−10

(combined e+e− and τ data) ,

where the errors of the lowest order calculation ahad
µ and

a
(2a,b,c)
µ are added linearly.

The inverse of the fine structure constant at M2
Z is

found to be

α−1(M2
Z) = 128.889 ± 0.087

(e+e− data only)
α−1(M2

Z) = 128.878 ± 0.085
(combined e+e− and τ data) .

One may use the latter (combined) result for α(M2
Z)

to improve the constraint on the mass of the standard
model Higgs boson MHiggs inferred from a global elec-
troweak fit. This is done by utilizing current available
electroweak data [88,89] and the ZFITTER electroweak
library [90]. It requires MZ, mtop, and α(M2

Z) as input
parameters, which are allowed to vary within their exper-
imental accuracies. The additional parameters MHiggs and
the strong coupling constant atM2

Z, αs(M2
Z), are freely ad-

justed in the fit. We obtain αs(M2
Z) = 0.1201 ± 0.0033

which is in perfect agreement with the experimental value
of 0.122± 0.006 [91] from the analyses of QCD observables
in hadronic Z decays at LEP. The fitted Higgs boson mass
is 138+137

−76 GeV, compared to 149+148
−82 GeV when using the

previous value of α(M2
Z) from (13). An additional error of

50 GeV should be added to account for theoretical uncer-
tainties [90].

Figure 6 depicts the variation of χ2 as a function of the
Higgs boson mass for the new and previously used values
of α(M2

Z) (the latter taken from [7]). We obtain an upper
limit for MHiggs of 516 GeV at 95% CL.

7 Conclusions

We have reevaluated the hadronic vacuum polarization
contribution to (g− 2) of the muon and to the running of
the QED fine structure constant α(s) at s = M2

Z. We used
new data from τ decays, recently published by the ALEPH
Collaboration, in addition to slightly enlarged e+e− anni-
hilation cross section data sets in order to improve the
precision of the corresponding integrals. Our results are,
to lowest order, ahad

µ = (701.1± 9.3)×10−10 yielding aµ =

(11 659 170.6 ± 10.2) × 10−10 and ∆α
(5)
had(M

2
Z) = (281.7

± 6.2)×10−4, propagating α−1(0) to α−1(M2
Z) = (128.878

± 0.085). The improvement coming from τ data is small in
the ∆α(5)

had(M
2
Z) case which is dominated by high energy
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Fig. 6. Constraint fit results for the previous and the new
value of α(M2

Z) as a function of the Higgs mass

contributions. However, it causes a 37% reduction in the
error on ahad

µ .
In the near future, new low energy e+e− annihilation

data are expected to be produced by the CMD-2 Collabo-
ration [11] at Novosibirsk. In addition, new results for the
τ− →π−π0 ντ spectral function with a precision compa-
rable to the ALEPH data were recently presented by the
CLEO Collaboration [92]. Significant improvement is also
expected from energy scans at the future high-luminosity
e+e− collider DAΦNE in Frascati.
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